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Abstract. The standard definition of climate is, by convention, based on a thirty-year sample.
But why? One way to define the sampling period for constructing climatologies is to ask: What
is a sufficient sample to construct probability density functions (PDF) for key meteorological
variables? One method for judging the sufficiency of a sample to construct a PDF is to use
information theory. I propose a framework for evaluating climatic sampling periods based
on level of detail and associated uncertainties in the estimated PDF, the Shannon entropy
growth curve and its discrete derivative, and Klullback-Leibler divergence-based statistics for
quantifying the information gain as the sampling period is expanded by a specified amount.
I apply this approach to daily data from the Central England Temperature (CET) record
spanning the period 1772–2006. PDF estimation is performed by using an optimal binning
technique derived from Bayesian principles to determine a uniform binning strategy that
maximizes the posterior probability given the data sample; this technique identifies the known
heavy truncation of the CET data and yields insight into the PDF structure with estimated
uncertainties for a sampling period spanning 1–235 years. Ensemble-generated statistics
from windowed resampling and Monte Carlo calculations of neighboring estimated PDFs are
computed, resulting in confidence intervals for all the structural quantities in the framework.
I use these statistics to compare the relative confidence associated with a number of popular
sampling periods.

1. Introduction

It is standard practice to compute climatic quantities by using a thirty-year sample of
meteorological data—a convention defined by the World Meteorological Organization. The
choice of thirty years as the sampling period was decided in 1935 at the International
Meteorological Organization’s conference in Warsaw[1, 2]. Sampling periods considered ranged
from eleven years (the sunspot cycle) to fifty years (to better capture interdecadal variability),
but no record exists about the advocates for a particular period or the supporting arguments
they offered [2]. The UK Met Office (UKMO) claims on its web site that climate is defined using
a thirty-year sample to eliminate year-to-year variations in the moments [3].

One way to decide how long a record is required to describe the climate is to construct
probability density functions (PDFs) for multiple meteorological fields over an increasingly
long period of time and compare them with PDFs for longer periods or the complete data
record. The question then becomes: How long a sample period is required to derive PDFs



that are variable by variable sufficiently complete to describe the whole record? Information
theory provides quantitative measures for the content of a PDF, and assessing the skill with
which a candidate PDF Q(x) models the “ideal” PDF P (x). The Shannon entropy (SE) H(x)
measures the information content of P (x), and the Kullback-Leibler divergence (KLD) quantifies
the disparity between Q(x) and P (x).

Using the SE, the KLD, and a PDF estimation technique derived from Bayesian principles,
I propose a method for assessing climate definitions by answering the following questions:

Q1 How much detail is present in, and how confident can we be of an estimate of, the PDF for
a variable for a given sample of W years?

Q2 What is the information content H of a given sample of W years?

Q3 How well does a sample of W years reflect the whole available data record of Y > W years?

Q4 What is the incremental change in H with respect to W ?

Q5 What is the informativeness of expanding a sample of W years to W + 1 years?

I address Q1 using the uncertainty measures associated with the PDF estimation technique
described in Section 4, Q2 and Q4 using the SE and its discrete derivative ∆H(W ), and Q3

and Q5 using the KLD. I apply this technique to the longest existing daily meteorological
observation dataset, the Central England Temperature record (CET.

2. Information Theory

Information theory [4] is a means for quantifying overall structure in probability mass functions
(PMFs) and PDFs for discrete and continuous variables, respectively. Its antecedents lie in
Boltzmann’s statistical mechanical definition of thermodynamic entropy. Reference [4] gives a
detailed discussion of information theory. Previous applications of information theory to climate
include predictability ([5] and references therein), model evaluation [6, 7], and variability [7].

For a discrete variable X ∈ {x1, . . . , xN}, the (PMF) ~π is defined such that πi is the
probability that X = xi; the probabilities πi satisfy the conditions 0 ≤ πi ≤ 1,∀i ∈ {1, . . . , N},

and
∑

N

i=1
πi = 1. The SE H(X) is

H(X) = −
N

∑

i=1

πi log [πi]. (1)

The base of the logarithm in (1) determine the units of H(X); for bases 2 and e, H(X) is
measured in bits and nats, respectively. The normalization properties of the probabilities πi

imply H(X) ≥ 0. The SE quantifies the “surprise” in X. The maximum value of H(X) occurs
for a uniform distribution π1 = · · · = πN = 1/N ; for a system with N states, 0 ≤ H(X) ≤ log N .

Consider two distinct PMFs for X, ~ζ and ~π. The additional information required to describe
~π given ~ζ is the KLD

DKL(~π ‖ ~ζ) =
N

∑

i=1

πi log

[

πi

ζi

]

. (2)

Information theory is also applicable to a continuous variable x; one replaces the PMFs ~π
and ~ζ with PDFs p(x) and q(x), respectively; and the summations over discrete states in (1) and
(2) become integrals with respect to the continuous variable x [4]. The main challenge is that
an integral formulation of the SE can be negative or infinite; the reason is that the probability
density function p(x) may locally exceed unity. Furthermore, numerical computation of the SE

and KLD is necessarily sensitive to the discretization dx → ∆x; this is more the case with the
SE than the KLD. Thus, one must take care in discretizing or binning continuous data to form
a PMF or PDF, respectively. This issue is discussed in detail in Section 4.



In this study I propose a framework for evaluating climate sampling periods based on the SE

and the KLD. Consider a given climate variable (e.g., a station record) for which a long-term
sample of Y years is available. Suppose we draw from this large sample a contiguous (in time)
window spanning a period of W < Y years. Computing the SE for this sample, H(W ), where
the argument to H denotes the sample size, provides the answer to Q2. One can answer Q3 by
computing the KLD DKL(P ‖ Q) for the PDF’s Q(W ) and P (Y ) estimated from the windows
spanning W and Y years, respectively. The marginal increase in SE from Q4 is determined
by computing the discrete derivative [8] ∆H(W ) ≡ H(W ) − H(W − 1),W ≥ 1. Note that
∆H(1) = H(1), since we go from knowing nothing about the system to knowing what a one
year sample will tell us. The answer to Q5 is the KLD DKL(P (W + ∆W ) ‖ Q(W )).

3. The Central England Temperature Record

The (CET) the longest observational record for surface air temperature. The original CET

compiled by Manley are monthly averages beginning in 1659. The daily CET span the period
1772–present. In this study, I used data for the period 1772-2006, obtained from the UKMO
Hadley Centre [9] operated by the British Atmospheric Data Centre. Parker et al. [10] describe
the data selection and processing methods used to create the CET daily record. Archived
temperatures in the record are rounded to the nearest 0.1◦C.

4. Numerical Method for PDF and Entropy Estimation

The central problem for computing the SE (1) for a continuously valued quantity is choosing
a robust discretization scheme that allows PDF and subsequent entropy estimation. The main
perils one faces in PDF estimation are choosing too few (oversmoothing) or too many (overfitting)
bins. Because the SE is sensitive to the number of bins used to compute it from a sample of
a continuous variable, care is required in this choice. Many methods exist for binning data to
estimate PDFs; Scott [11] provides an excellent overview of the problem.

For this study, I have chosen Knuth’s [12] optimal binning scheme, which is derived from

a Bayesian approach. The Bayesian priors are the sample data ~d, and the assumption of a
piecewise-constant PDF with uniform bins constitute I. The number of bins M maximizes a
marginal posterior probability function p(M |~d, I):

p(M |~d, I) ∝

(

M

V

)N Γ(M

2
)

Γ(1

2
)M

∏

M

k=1
Γ(nk + 1

2
)

Γ(N + M

2
)

, (3)

where Γ(·) is the Gamma function, N is the sample size, V is the sample range, and nk is the

number of counts in each bin. The value of M that maximises p(M |~d, I) yields the most probable

piecewise constant, uniform-bin-width PDF based on the sample ~d. It is easier computationally
to maximize the logarithm of RHS of (3). The mean bin probability πi and its variance σ2

i
are

πi =

(

ni +
1

2

)/(

N +
M

2

)

(4)

σ2

i =

(

ni +
1

2

)(

N − ni +
M − 1

2

)(

N +
M

2
+ 1

)

−1(

N +
M

2

)

−2

. (5)

Note that even when data is absent from a bin, πi 6= 0, and the πi are normalized by construction.
The average signal-to-noise ratio SNR for the estimated PMF is

∑

M

i=1
πi/σi. The optimal value

of M from (3), the resulting πi in (4), and the associated SNR answer Q1.
The aforementioned rounding of the CET data presents a problem for the optimal binning

scheme described; the truncation of the data constitutes a fine-scale feature in addition to the



broad-scale shape of the PDF. This fine-scale feature causes the log posterior function to have
numerous local maxima and to exhibit growth at large numbers of bins (cf. Figure 5D in [12]).
In fact, the optimal binning scheme is an excellent detector of severely truncated data [13].
The truncation effects can be removed through data smoothing by adding a random uniformly
distributed deviate that brackets the rounded value by half the truncation value; this will not
replace lost information [13] but will allow us to estimate the larger-scale structure of the PDF.
In this study I have smoothed the CET data by adding to each value Ti a uniform random
deviate δi ∈ [−0.05, 0.05); this smoothing allows the optimal binning scheme to better identify
the large-scale structure of the sample’s PDF (cf. Figure 1B in [12]) and, when truncated to the
nearest 0.1◦C, yields the original CET timeseries.1

The SE and KLD values in this study are calculated by first estimating the uniformly
binned PDF through maximization of the logarithm of (3), yielding the number of uniform
bins M and the bin probabilities (4); these estimates are used to compute each PDF’s SNR.
Uncertainty estimates for the SE and KLD are computed through windowed resampling of the
data and Monte Carlo ensemble statistics using a large number (10,000) of “neighboring” PDFs
determined from (4) and (5). Random number generation to determine the neighboring PDFs
is accomplished by using standard techniques. Data sampling is implemented by using a sliding
window technique in which a window of W years is moved one year at a time across the total
dataset of Y years. This process results in Y −W + 1 samples for a window spanning W years;
for the CET’s Y = 235 years, W = 1 and W = 10 years result in 235 and 226 distinct samples
(or 2.35× 106 and 2.26× 106 PDFs), respectively. Ensemble statistics are computed for the SE

and KLD quantities, including the mean, variance, minima/maxima, and key percentiles.

5. Results

Figure 1 shows the results of the optimal binning scheme applied to the CET 1772–2006. The
number of bins M grows steadily with increasing window size W but shows some variation
for fixed W (Figure 1(a)); the central curve is the mean 〈M(W )〉, the box indicates one
standard deviation on either side of 〈M(W )〉, and the whiskers indicate maximum and minimum
values. The range of values M(W ) narrows with larger samples as the range between extreme
temperature values become more consistent across each windowed sample; for W ≥ 176 years,
all samples contain the minimum and maximum values in the full CET, resulting in the same
dynamic range and yielding M = 41 bins. The SNR grows steadily with W (Figure 1(b)), with
a narrowing of the range of values of SNR. The growth in M and SNR w.r.t. W indicates
increasing detail in the PDF, combined with increasing confidence in the PDF’s individual bin
probabilities (Figures 1(c)-1(f)).

Figure 2 shows percentiles of H for the CET. The median value of H(W ) climbs rapidly for
1 ≤ W ≤ 10 years, continues to climb steadily for 10 < W ≤ 60 years, climbs less rapidly for
60 < W ≤ 100 years, and converges to a near-constant value H ≈ 4.55 bits beyond the century
timescale (Figure 2(a)). The range of values of ∆H(W ) narrows rapidly for 1 ≤ W ≤ 10 years,
and then drops off steadily with increasing sample size W (Figure 2(b)). The interdecile ranges
of ∆H at W = 30 and W = 50 years correspond roughly to the interquartile ranges at W = 10
and W = 30 years, respectively.

Figure 3 shows percentiles for the total and incremental information gains DKL(P (Y ) ‖
Q(W )), and DKL(P (W ) ‖ Q(W − 1)), respectively. The representativeness of a subsample of
W years increases rapidly for 1 ≤ W ≤ 10 years, with the median of DKL(P (Y ) ‖ Q(W ))
dropping by a factor of 10 over this range, and continuing to decrease steadily out to W = 100
years (Figure 3(a)). The incremental information gain DKL(P (W ) ‖ Q(W − 1)) also drops in a

1 This smoothing has been tried for multiple random smoothings of the CET, and the resulting quantities
computed from these datasets are consistent with the results presented here.



0 20 40 60 80 100 120 140 160 180
Sample Size (Years)

5

10

15

20

25

30

35

40

45

50
N

u
m

b
er

 o
f 

B
in

s

Central England Temperature Record (1772-2006)
Optimal Binning Growth Curve

(a)

0 20 40 60 80 100 120 140 160 180 200 220
Sample Window Size (Years)

0

5

10

15

20

25

30

35

40

<
π i / σ

i>

CET - Optimal Bin Probabilities
Signal-to-Noise Ratios

(b)

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Temperature 

o
C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
ab

ili
ty

CET Probability Density Function
Sampling Period 2006

(c)

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Temperature 

o
C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
ab

ili
ty

CET Probability Density Function
Sampling Period 1997-2006

(d)

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Temperature 

o
C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
ab

ili
ty

CET Probability Density Function
Sampling Period 1977-2006

(e)

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Temperature 

o
C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
ab

ili
ty

CET Probability Density Function
Sampling Period 1772-2006

(f)

Figure 1. Optimal binning of the CET data: a) growth curve for number of bins, b) SNR,
and estimated PDFs for windowed samples covering periods c) the year 2006, d) 1997-2006, e)
1977-2006, and f) 1772-2006.
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Figure 2. Shannon Entropy estimation for CET: a) SE as a function of sampling window size,
and b) Marginal Entropy increase ∆H.

similar fashion as adding one year to a sample becomes less significant (Figure 3(b)). The 90th
percentile at W = 50 and W = 30 years correspond roughly to the 30th and 10th percentiles at
W = 30 and W = 10 years, respectively.
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Figure 3. Kullback-Leibler Divergences for the CET: a) KLD for sample of W years versus
the whole dataset; b) Marginal KLD DKL(P (Y ) ‖ Q(W )).

6. Conclusions

A information-theoretic framework for evaluating the definition of climate based on sampling
periods has been presented, and applied to the CET. The framework allows direct comparison
between sampling periods, allowing one to decide the relative risk or gain in selecting shorter
or longer sampling periods, respectively. The results presented here are preliminary. The
overall utility of this framework must be evaluated through application to a wider variety of
observational station records and to reanalyses, and this will be an area of future investigation.
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